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(Received 29 November 1984) 

Observed statistics of non-breaking ocean-surface gravity waves shoaling between 4 
and 1 m depths are compared with the predictions of linear finite-depth theory and 
a nonlinear model. The linear theory included effects af the directional dis- 
tribution of energy within each frequency component. The nonlinear model, which 
does not consider directional effects, is based on Boussinesq-type equations for a 
sloping bottom (Freilich & Guza 1984). Given initial conditions in 4 m depth, the 
nonlinear model more accurately predicts the evolution of energy spectra, coherence 
and phase speed between sensors, and lengths of runs of high waves than does the 
linear theory. In  four out of five cases, observed trends in the evolution of 
sea-surface-elevation skewness are predicted by the nonlinear model, while linear 
theory predicts zero skewness. Neither model can explain changes in the directional 
spectra observed between 9 and 4 m depths. 

1. Introduction 
As ocean surface gravity waves shoal the wave field can undergo substantial 

nonlinear evolution from its deep-water state. Narrowband spectra develop secondary 
peaks at harmonics of the peak frequency, while broadband spectra often show an 
increase in energy over a wide range of frequencies higher than the most energetic 
part of the spectrum. Along with this amplitude evolution, phases of the various 
frequency components also evolve, sometimes resulting in phase velocities substan- 
tially different from those predicted by the linear finite-depth dispersion relationship 
(Inman, Tait & Nordstrom 1971; Busching 1978; Thornton & Guza 1982; and 
others). The shape of individual shoaling waves also changes, from an almost 
symmetrical profile in deep water to a shape with sharp crests and broad, flat troughs 
in shallow water. This change in wave shape is partially reflected by the evolution 
of sea-surface-elevation skewness. The mean lengths of runs of high waves also show 
significant evolution as the wave field shoals (Elgar, Guze & Seymour 1984). 

Linear finite-depth theory (LFDT) does not predict the transformation of many 
of the statistics of a shoaling wave field. On the other hand, the nonlinear model 
recently developed by Freilich & Guza (1984, hereinafter referred to as FG), was 
shown to be generally superior to LFDT for the prediction of frequency-band energy 
and phase (as measured by the coherence and phase between data and model). FG 
considered the shoaling of a spectrum of waves with a high-frequency cutoff 
f =  0.234 Hz, between depths of 10 and 4 m. The beach slope was /3 = 0.022. The 
present study extends the results of FG to water as shallow as 1 m, on a steeper beach 
(B = 0.05), to higher frequencies (f < 0.4 Hz), and considers some additional statistics 
(coherence between sensors, phase speed, skewness, and runs of high waves). 

After a brief description of the experiment and data reduction, linear and nonlinear 
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FIGURE 1.  Measured beach profile, constant-slope approximation (dashed line), and instrument 
locations along a line perpendicular to the beach: 0 ,  pressure gauges; 0, bidirectional current 
meters. 

models for the prediction of auto-spectra and cross-spectra (between two spatially 
separated sensors) are reviewed. The cross-spectral predictions are then used for 
comparison of models and observed coherences and phase speeds. Predictions of 
sea-surface-elevation skewness and the mean lengths of runs of high waves are also 
compared with observations. The results indicate that, for the statistics and wave 
conditions considered here, the nonlinear model is superior to LFDT. Finally, 
observations of directional spectra in 9 and 3-4 m depths indicate that nonlinear 
effects can be very important in the shoaling transformation of a directional 
spectrum. 

2. Experiment 
The field data were obtained at Santa Barbara, California, during the Nearshore 

Sediment Transport Study experiment conducted in January and February 1980 
(Gable 1981). The observations used in the present study were obtained primarily 
from bottom-mounted pressure sensors, located along a line perpendicular to the 
beach (mean slope B = 0.05), from approximately 1 4  m depth (56 m horizontal 
distance). A typical beach profile and sensor locations are shown in figure 1. 

Days with incident significant wave heights H ,  (defined here as four times the 
sea-surface standard deviation) greater than 1 m are not considered because in those 
cases only a few pressure sensors were outside the surf zone, and the models examined 
in this study do not allow for wave breaking. In order to maximize the number of 
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Initial condition 

Data set Depth (cm) Hs (4 
January 30 409 33 

February 3 388 93 
February 4 378 88 

February 2 387 60 

February 12 340 52 

Number of 
512 s 

records 

18 
33 
16 
19 
13 

Most shoreward 
s-location (m) 

dissipation 

50 
56 
41 
41 
41 

< 15% 

TABLE 1. Values of initial depth and significant wave height at the most seaward location (initial 
condition), number of 512 s records, and most shoreward s-location where dissipation is less than 
15 yo 

sensors available for model comparisons, five days with significant wave heights in 
the range 33-93 cm (table l), and a variety of spectral shapes were selected. The zone 
of wave breaking is qualitatively indicated by the most shoreward location where 
the wave field’s linear energy flux has decreased by less than 15 % of the initial flux 
(table 1). The 30 January and 2 February data show no significant dissipation 
throughout the entire 56 m, while the other 3 data sets show a substantial decrease 
in energy flux between z = 41 m and z = 56 m. 

The pressure gauges were sampled at 2 Hz for up to 5 h daily during the 
experiment. Bulk sta,tistics (e.g. variance, frequency of the spectral peak, and various 
group statistics) were checked for stationarity. Data sets with any indication of 
non-stationarity were rejected. The selected data were processed by breaking the 
entire record into consecutive sections of 512 s each. After removal of tidal trends, 
linear finite-depth theory was used to convert Fourier coefficients of bottom pressure 
to sea-surface elevation (Guza & Thornton 1980 and references therein). A linear 
transformation is consistent with the lowest-order solutions to the Boussinesq 
equations (4.2). Finite-depth theory is used to avoid errors in the pressure-to-elevation 
transformation near the high-frequency cutoff (f = 0.4 Hz). With A,@), A&) the 
complex Fourier coefficients observed at offshore locations zl, zz, the cross-spectrum 
(needed for coherence and phase-speed calculations discussed below) is 

(2.1) 

with the real and imaginary parts the cospectrum and quadrature spectrum, 
respectively. The frequency resolution from the data (and for model initial conditions) 
is 1.95 x Hz. Statistical stability is gained by averaging (cross-) spectra from 
many 512 s records and merging over neighbouring frequency bands, resulting in a 
final frequency resolution (for comparison between data and model predictions) of 
7.8 x Hz. Table 1 shows the number o€ 512 s sections for each data set, as well 
as the depth of water and significant wave height (H,)  at the deepest sensor (used 
as initial conditions for model predictions). 

Bidirectional current meters colocated with the pressure sensors at x = 0 and 
5 = 12 m were used to estimate the directional spectrum needed as input for LFDT 
coherence and phase predictions. Directional spectra at both locations were estimated 
with a maximum-likelihood technique (Oltman-Shay & Guza 1985) for each frequency 
band between 0.04 and 0.3 Hz. Because of low signal levels resulting from depth 
attenuation, directional spectra were not measured above 0.3 Hz. Directional spectra 

Cl,(w) = Co(w) +i  &u(w) = A,(@) A:(w), 
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for frequencies between 0.3 and 0.4 Hz were set equal to those measured a t  0.3 Hz. 
Directional effects are not considered for frequencies below 0.04 Hz. Because of the 
small spatial separation, the directional spectra a t  x = 0 and 12 m differed primarily 
by a 5' rotation (which was independent of frequency and day). This discrepancy 
probably corresponds to  errors in the current-meter orientation. A single directional 
spectrum representative of the input conditions was taken as the average of the x = 0 
and 12 m spectra (corrected for the small rotation). 

3. Linear finite-depth theory 
The spectral transformation of a unidirectional, normally incident linear wave field 

is obtained by conserving energy flux, ECg = constant, where E is the energy and 
Cg is the group velocity. If each frequency component has a directional distribution 
of energy S(w,  0), LFDT takes a more complicated form. For plane, parallel contours 
(Le MBhaut6 & Wang 1982), 

where 0 is the angle between the beach normal and a ray perpendicular to the wave 
crest, and the subscript zero refers to initial conditions. The wavenumber k is given 
by the finite-depth linear dispersion relation, w2 = gk tanh (kh) ,  where g is acceleration 
due to gravity and h is the depth. Thus, given an initial directional spectrum, S ( w ,  0) 
the directional spectrum a t  any other depth is determined. The energy a t  frequency 
w is 

E(w)  = J S(w,0)d0. 
0 

As mentioned above, data from pressure-sensor-current-meter pairs located at x = 0 
and 12 m are used to  estimate the initial directional distribution (So(w,  0)) for an entire 
(i.e. all 512 s pieces) data set. When integrated over direction (3.2), So(w, 0) yields 
a band energy equal to  that measured a t  the deepest sensor. Thus linear and 
nonlinear models both use the measured energy spectra a t  x = 0 m as initial 
conditions, but LFDT also uses the estimated directional distribution. 

Substitution of So(@, 0) into (3.1) yields predictions of S ( w ,  0) a t  shoreward 
locations, which are in turn integrated, (3.2), producing predictions of power spectra. 
For a linear, random wave field with a directional distribution of energy, the complex 
cross-spectrum between two sensors with spatial separation Ax is (Munk, Snodgrass 
& Gilbert 1964; Yefimov, Solov'yev 6 Khristoforov 1972) 

C ( w )  = Co(w)  + i &u(w) = exp {ik Ax cos 0) S ( w ,  19) do. joZX (3.3) 

4. Nonlinear model 
Starting with the Boussinesq equations for a sloping bottom (Peregrine 1967), FG 

develop equations which describe the evolution of the wave field's Fourier amplitudes 
and phases owing to  both shoaling and nonlinear effects. The model assumes that the 
waves are normally incident to a beach with plane-parallel contours, and that no 
energy is reflected or dissipated. The sea surface is represented as 
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where the radian frequency w, = n Aw, with Aw the radian-frequency resolution. A t  
lowest order the waves are linear. The Fourier amplitudes a, are spatially slowly 
varying. The spatial phase function Gn has both O( 1 )  derivatives (corresponding 
to the linear wavenumber) and higher-order derivatives which result in slow phase 
changes owing to nonlinear interactions. Substitution of (4.1) into the Boussinesq 
equations results in a set of coupled nonlinear differential equations for the amplitudes 
and phases. (See FG for a complete derivation and description of the dispersive 
nonlinear model.) Schematically, the differential equations are 

with k ,  = (w,/hi)  (1  + i h w i ) .  The overdot indicates differentiation with respect to z, 
and the coupling and shoaling coefficients (R ,  and S,) are functions of w and h (given 
explicitly in FG equations (21)-(24)). These equations can be numerically integrated 
given a set of initial amplitudes and phases. The approximations leading to the 
Boussinesq equations are not valid in deep or intermediate water depths, i.e. for 
depth-to-wavelength ratios which are not small. FG found good agreement between 
the nonlinear model and data for depths from 10 to 4 m, in the frequency range below 
0.234 Hz. In the deepest water, the highest frequencies only marginally satisfied the 
shallow-water requirement. The present study, on a different beach, extends these 
results by using amplitudes and phases measured in 4 m depth as the initial 
conditions, and integrating the equations to depths as shallow as 1 m. This allows 
higher-frequency modes to be considered (0.0 <f < 0.4 Hz). On the other hand, 
another necessary assumption in deriving the nonlinear model is that the ratio of 
amplitude to depth be small. This assumption may start to break down in water as 
shallow as that considered here, and one purpose of the present work is to test the 
operational validity of the solutions for moderate amplitude-to-depth ratios. 

For each 512 s record of data, Fourier coefficients of the deepest sensor were used 
as initial conditions for the numerical integration of (4.2), which yields predicted 
Fourier coefficients at shoreward locations. Many 512 s pieces were integrated and 
used to calculate predicted auto- and cross-spectra (2.1) with the same number of 
degrees of freedom as the observations. 

5. Spectra 
Measured energy spectra are compared to LFDT and nonlinear predictions a t  

sensors shoreward of the initial conditions (z = 0 m) in figures 2-5. All the spectral 
(and coherence and phase speed) plots presented here have a frequency resolution 
of 0.0078 Hz. In  the following discussion of power spectra (and coherence and phase 
speed) the data (except 12 February) will be examined in order of increasing 
energy, thus providing a sequence with increasing nonlinearity. The broad spectra on 
30 January have the smallest waves considered ( H ,  = 33 em), and there is very little 
spectral evolution as the wave field shoals (figure 2). The slight evolution that does 
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FIGURE 2. Energy spectra for the 30 January data. From top to bottom, z = 0 (h = 4.1 m), 12 
(3.5 m), 24 (2.9 m), 41 (2.0 m), and 56 m (1.2 m). 0, data;  A, directional LFDT; +, nonlinear 
model. There are 144 degrees of freedom (d.0.f.) and the bars indicate 95% confidence limits. 

Frequency (Hz) 

occur is modelled equally well by LFDT and the nonlinear model. Since this is an 
extremely low-energy wave field, it  is not surprising that nonlinearities are not 
evident in the spectral evolution. Directional effects are of little consequence in LFDT 
energy spectra (in contrast to coherence and phase) predictions, so LFDT and the 
nonlinear model are essentially equivalent for 30 January. The narrowband spectra 
of 2 February (figure 3, Hs = 60 cm) show substantial spectral evolution. Harmonic 
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FIQURE 3. Energy spectra for the 2 February data. From top to bottom, z = 0 ( h  = 3.9 m), 12 
(3.3 m), 24 (2.6 m), 41 (1.8 m), and 56 m (1.0 m). 0, data; A, directional LFDT; +, nonlinear 
model. There are 264 d.o.f., and the bars indicate 95% confidence limits. 
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FIGURE 4. Energy spectra for the 4 February data. From top to bottom, x = 0 ( h  = 3.8 m), 12 
(3.2 m), 24 (2.6 m), and 41 m (1.7 m). 0, data; A, directional LFDT; +, nonlinear model. There 
are 152 d.o.f., and the bars indicate 95% confidence limits. 

(f = 0.12,0.18, 0.24 Hz) growth and an overall increase in high-frequency energy is 
accurately predicted by the nonlinear model for ~t: < 41 m. At the most shoreward 
sensor, z = 56 m, the nonlinear model overpredicts spectral levels above 0.2 Hz. This 
is in part due to the existence of the high-frequency cutoff, f = 0.4 Hz. The nonlinear 
model enables energy to be transferred between modes, often from low frequencies 
to higher ones. For example, nonlinear interactions between the peak (0.06 Hz) and 
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FIGURE 5. Energy spectra for the 12 February data. From top to bottom, x = 0 ( h  = 3.4 m), 12 
(2.8 m), 24 (2.2 m), and 41 m (1.3 m). 0, data; A, directional LFDT; +, nonlinear model. There 
are 104 d.o.f., and the bars indicate 95% confidence limits. 

Frequency (Hz) 

its first harmonic (0.12 Hz) transfer energy to the second harmonic (0.18 Hz). Similar 
nonlinear interactions may require energy transfer to frequencies above 0.4 Hz, but 
these modes are prevented from receiving energy owing to the high-frequency cutoff. 
Model testing shows that energy builds up at those frequencies immediately below 
the cutoff frequency. The nonlinear equations were also integrated with identical 
initial conditions, but with a high-frequency cutoff at 0.234 Hz. For these conditions, 
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the nonlinear model predicted spectral evolution accurately as far as x = 41 m. 
However, as in the higher-frequency-cutoff case, at x = 56 m the model over- 
predicted spectral levels just below the cutoff frequency, from about 0.18 to 
0.234 Hz. Another possible contribution to the model's overprediction of high- 
frequency energy a t  x = 56 m is that in water this shallow (less than 1 m) the ratio 
of amplitude to  depth (Hrm,/2h = 0.25) may not be small enough to satisfy the 
assumptions made in deriving the nonlinear model. Finally, there is some dissipation 
by x = 56 m, although it  is less than 15 yo. It is unknown how wave-breaking affects 
the spectrum, but in any case the nonlinear model does not account for dissipation. 
Comparisons of spectra from colocated surface-piercing wave staffs and pressure 
sensors in relatiyely shallow water (Esteva & Harris 1970; Guza & Thornton 1980; 
and others) suggest that  the conversion from pressure to sea-surface elevation is not 
responsible for the high-frequency discrepancies. 

Although the 4 February spectra have shapes (figure 4) similar to the 2 February 
data (figure 3), the former is substantially more energetic ( H ,  = 88 cm). Consequently, 
nonlinearities are stronger, amplitude evolution is more rapid, and nonlinear spectral 
evolution is significant by x = 24 m (compare 4 February a t  x = 24 m, figure 4, with 
2 February at x = 24 and x = 41 m, figure 3). I n  addition, the nonlinear model 
begins to  overpredict high-frequency (f > 0.2 Hz) spectral levels a t  x = 41 m 
(Hrm,/2h = 0.2). Because there is substantial dissipation between x = 41 and 56 m 
on 4 February, the x = 56 m data are not shown. The 3 February data set (not shown) 
has spectra which are similar in shape and level to those of 4 February, and 
comparable agreement between model predictions and data. 

The 12 February spectral shape (figure 5) differs from the previously discussed data 
sets (figures 2 4 ) .  The double-peaked spectra represent a combination of a narrow swell 
peak, centred at f = 0.07 Hz, and a broad sea peak above f = 0.24 Hz. As the waves 
shoal, the measured high-frequency (f > 0.24 Hz) energy is seen to decrease below 
LFDT predictions while the spectral valley (f z 0.15 Hz) separating the peaks rises 
above LFDT values. As predicted by the nonlinear model, energy apparently is being 
transferred from both low- and high-frequency peaks to the mid-frequency valley. 

6. Coherence and phase speed between sensors 
The objective of this section is to address the relative accuracy of LFDT and 

nonlinear model predictions of the phase evolution of shoaling waves in shallow water. 
There are several ways to accomplish this; for example, predicted and observed 
cross-spectra (between sensors) could be directly compared. However, the most 
commonly used approach is to  recast the cross-spectrum into coherence and phase 
speed. To facilitate comparison with previous work, this is also done here. Coherence 
squared and phase speed are defined in (6.1) and (6.2), respectively: 

CO(O)Z+ &U(W)" 

c,, c22 COH2 = 

where # ( w ) ,  the phase difference between sensors, is given by 

(6.2a) 

(6.2b) 
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LFDT predictions of Co(w) and &u(w) are obtained from (3.1) and (3.3), g' iven an 
initial directional spectrum S,(w, 6). Nonlinear cross-spectral predictions are calcu- 
lated from the predioted Fourier coefficients at the appropriate locations. Another 
common definition of phase speed is (Yefimov et al. 1972; Huang & Tung 1977) 

These two definitions ((6.2) and (6.3)) for phase speed are equal if the waves are 
unidirectional or if the sensor separation is small, such that k Ax 4 1 (Yefimov 
et al. 1972; Huang 1981). However, (8.2) and (6.3) are not, in general, the same. 
Consequently, it is inappropriate to compare phase speeds obtained from data using 
(6.2) with theoretical phase speeds calculated with (6.3). For this study, (6.2) is used 
exolusively, Although Huang (5981) and others consider (6.3) to be the 'true answer' 
for phase speed, there is no obvious justification for this assertion. Neither of these 
dehitions ((6.2) or (6.3)) appears in a fundamental theoretical way, It is only 
necessary that the definition of phase speed used for theoretical calculations is the 
same as that used for data-based computations. 

Theoretical and observed coherence and phase-speed spectra are shown in the upper 
and middle panels of figures f H 3  for 30 January, 2 February, and 4 February (with 
H ,  = 33, 60, 88 cm respectively). The two solid lines in each phase-speed plot are 
theoretical linear values of celerity. The lower line is the phase speed predicted by 
the linear finite-depth dispersion relationship assuming a normally incident wave 
field, while the upper line is the theoretical linear phase speed caloulated with 
directional ei€ecte ((3.1) and (3.3)). To apply (3.3), a flat bottom was assumed, with 
depth equal to the mean depth of water between the two sensors. Accounting for the 
(small) depth variation produces negligible differences. Because mean cross-shore 
currents in the field data were a very small fraction o f  the observed phase speeds, 
Doppler shifts are assumed to be zero. The observed power spectra for each sensor 
used in the corresponding coherenoe and phase plots are shown in the lower panel. 
The present discussion considers only frequencies above!,, the frequency of maximum 
power (indicated with a vertiaal arrow). Lower frequencies are considered later. 

Recall that LFDT power-spectral predictions are relatively insensitive to directional 
effects. Therefore the similarity of nonlinear and LFDT power-spectra predictions 
on 30 January suggested that nonlinear effects were weak for z < 41 m (figure 2). 
This is confirmed by the general similarity of nonlinear (which assumea normal 
incidence) and normally incident LFDT phase-speed predictions (figure 6). The 
differences at the highest frequencies at the deepest sensor pair shown (figure 6a) are 
consistent with the linear Boussinesq dispersion relationship of the nonlinear model, 
which underpredicts phase speed €or components if kh is not small, as described in 
detail in FG. Directional effects are most apparent at the two deepest sensor pairs 
(figures 6a and b ) ,  where the observed coherences at  frequencies above f,, are more 
accurately modelled by directional LFDT. Some of the tendency towards non- 
dispersiveness in figures 6 (a) and ( b )  is, according to these calculations, a linear effect 
associated with the observed wider directional distributions at  high frequencies. 

As the waves shoal (figure 6b) several effects become apparent. The difference 
between directional and normally incident LFDT phase speed diminishes, in accor- 
dance with refractive narrowing of the directional spectrum. Also, as kh becomes 
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smaller the linear Boussinesq dispersion relationship is more accurate, and the high- 
frequency nonlinear-model values of phase speed approach normally incident linear 
theory. At the shallowest sensor pair (figure 6c) refraction has further reduced the 
difference between directional and normally incident LFDT phase speeds, while 
nonlinear interactions have raised nonlinear-model phase speeds slightly above 
normally incident LFDT predictions. The data in figure 6(c)  have phase speeds 
slightly above all the predictions, suggesting that directional and nonlinear effects 
are of comparable (small) magnitude, and both contribute to the observed increase 
in phase speed. Perhaps coincidentally, the predicted nonlinear and directional 
LFDT coherence values a t  the shallowest station are virtually identical, and both 
compare favourably with the data. 

As expected, the larger wave height on 2 February ( H ,  = 60 cm compared with 
H ,  = 33 cm on 30 January) results in stronger nonlinearities. At the deepest sensor 
pair (figure 7 a ) ,  below about 0.20 Hz the nonlinear-model phase speeds show 
exceptionally good agreement with the data. Frequencies which are harmonics of fp 

have phase speeds larger than directional LFDT while the phase speeds of some 
non-harmonic frequencies are actually decreased. Above 0.20 Hz the nonlinear 
predictions of phase speed fall below LFDT (and the data) because of the inaccuracy 
of the linear Boussinesq dispersion relation when kh is not small. In shallower water, 
however, the nonlinear model predicts the observed phase speeds out to the highest 
frequencies investigated (figure 7 b and c), while LFDT theories underpredict the 
observations over most of the frequency range. It is interesting to note that the 
observed and nonlinearly predicted phase speeds are actually increasing with 
frequency. In very shallow water, LFDT coherence predictions are too high, while 
the nonlinear model has coherence values close to the data, with local maxima at 
frequencies corresponding to the second and third harmonics of the spectral peak 
(figure 7 c). 

Coherences and phase speeds between the two  most offshore pairs of sensors on 
4 February, a data set with spectral shape similar to 2 February but with 50 yo larger 
incident wave heights ( H ,  = 88 cm), are shown in figure 8. Perhaps fortuitously, the 
nonlinearly predicted phase speeds do not show the effects of linear Boussinesq 
dispersion even a t  the deepest sensor pair (figure 8a) ,  and the nonlinear model 
accurately predicts observed phase speeds a t  all frequencies. As described by (4.2), 
increasing the wave height increases the rate of nonlinear phase evolution (compare 
figure 7 b  with figure 8 a ) .  At the next sensor pair shoreward (x = 24 and 41 m, 
figure 8 b ) ,  the nonlinear-model predictions of phase speed have a structure similar to 
the data, with local maxima a t  harmonics of the spectral peak, but are offset by about 
0.6 m/s at  all frequencies abovefp. The measured mean offshore current between these 
sensors, approximately 0.13 m/s (two to three times higher than the corresponding 
mean currents on 30 January, 2 February, and 12 February) can account for only 
about 25 yo of the offset. Coherence and phase speed for 3 February (not shown) are 
similar to those of 4 February. 

Comparisons of observed and LFDT coherences and phase speeds require specifi- 
cation of the directional spectrum ((3.3), (6.1) and (6.2)). It does not seem to be 
universally appreciated that coherence and phase speed are calculated using elements 
of the same cross-spectral matrix which is the fundamental information used in 
estimating the directional spectrum from observations (Barber 1963). Given a linear 
wave field and an array of sensors, an ideal directional-spectrum estimator yields 
directional spectra which are as consistent as possible with the measured cross- 
spectra, and hence with the observed coherence and phase speed between all sensor 
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FIGURE 8. Same symbols as figure 6, but for 4 February data, 182 d.0.f. 
(a) x = 0 and x = 24 m ( b )  24 and 41 m. 

pairs. On the other hand, if a standard low-resolution directional estimator is used, 
or an arbitrary directional form (such as S ( w ,  8) = cosn (8-8,)) is assumed, then 
theoretical (LFDT) and observed phase speeds will not agree even if the wave field 
is linear. 

In the field observations of Yefimov et al. (1972), high-frequency waves had phase 
speeds between the free-wave speed and the speed of the spectral peak. Yefimov et al. 
(1972) suggested that free and forced components are both significant in these data, 
but the data are also consistent with free waves alone. To resolve the ambiguity an 
extensive two-dimensional array would be required to map accurately the high- 
frequency energy distribution in (w,  k) space, and thereby quantify the relative 
amounts of free and forced waves contributing to the observed phase speeds. 

In a homogeneous ocean i t  is not possible to separate directional-spectra measure- 
ments from observations of coherence and phase speed. Note that in the present 
experiment coherence and phase speed are examined at sensors other than those used 
to estimate the directional spectra. The directional estimates at x = 0 m are used as 
initial conditions in order to study the propagation of directional LFDT through an 
inhomogeneous field (the shoaling region). Thus the somewhat circular comparisons 

3-2 
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discussed above are avoided. However, there are fundamental problems in estimating 
the directional spectra with a pressure-sensor-current-meter system (or slope array, 
or pitch-and-roll buoy) if the wave field is not linear. In  this case, any directional 
estimate which relies on linear theory is itself corrupted to some degree. The 
directional spectra at  x = 0 and 12 m were calculated with several different (but 
formally equivalent) linear assumptions, with no substantial difference in the results. 
Thus the estimated directional spectra are considered to be not distorted strongly 
by the use of linear theory. This conclusion is also supported by the nonlinear-model 
dynamics. To lowest order all waves (even if nonlinearly generated) follow the linear 
Boussinesq dispersion relation. Unlike the deep-water case, departures from the linear 
dispersion relation are never large. 

The discussion above has considered the coherence and phase speed of frequencies 
at  or above fp. The observations below fp, which are now briefly considered, are quite 
different (figures 6-8). The phase speeds are erratic, with values both substantially 
above and below the phase speeds for components above f , .  Linear outgoing (i.e. 
reflected) waves qualitatively explain these observations. Consider a wave field 
consisting of a normally incident linear wave and its phase-locked reflection 

7 = a cos( Jkdx+wt)+Ra cos( Jkdx-wt), (6.4) 

where R is the reflection coefficient. On a flat bottom, in very shallow water the 
cross-spectrum is given by 

] (6.5) 
CoZ(w) = (1+R)2  cos(kx) cos (k (~+Ax) )+( l -R)~  sin(kx) sin(k(x+Ax)), 

&u2(w) = - (1 - R)2 sin2 (k Ax), 

where k = w/(gh)i and Ax is the sensor separation. 
When R = 0 the associated phase speeds are equal to (gh);. When R = 1, the phase 

difference is zero between sensors which are not separated by a zero crossing of the 
standing wave. The phase speed is then infinite. Sensors which are separated by a 
zero crossing are R out of phase, independent of the sensor separation. Very closely 
spaced sensors which happen to be separated by a zero crossing will yield a phase 
speed close to zero. Thus phase speeds of any magnitude can occur with a pure 
standing wave. Note that this result does not follow from (3.3) with a directional 
spectrum consisting of two waves travelling in opposite directions. Equation (3.3) 
is valid for spatially homogeneous wave fields such as occur when waves travelling 
in different directions are phase independent. If a relatively narrow bandwidth in 
frequency is considered, close to a reflector (e.g. the beach), then incoming and 
outgoing waves are phase coupled. Suhayda (1974), Holman (1981), and others have 
shown clear evidence that low-frequency ( f  < f , )  ‘surf beat’ energy near beaches 
occurs in the form of waves standing in the cross-shore. Guza & Thornton (1985b) 
have shown similar results for the present data set. The observed phases (figure 9c) 
suggest that the lowest-frequency waves are almost completely reflected, while the 
highest-frequency waves are primarily progressive. The lower two panels of figure 9 
are phase speeds and phases calculated using (6.5), with 
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FIGURE 9. (a) Power spectra, (6) phase speed (normalized by (ghf) ,  values of normalized phase speed 
greater than 2.25 have been set equal to 2.25 for plotting purposes, and (c) phase difference observed 
on 30 January with pressure sensors a t  x = 41 and 5 = 62 m, mean depth = 1.5 m. The asterisks 
on the power spectra indicate predicted standing-wave nodal locations (Gum & Thornton 19856). 
The centre asterisk is for x = 62 m (dashed line); the other two are for x = 41 m (solid line). Spectral 
minima do indeed occur near these locations. The dashed line in the observed phase spectra (c) 
indicates the phase values which would occur if the waves are purely standing. The solid sloping 
lines are the phase differences if the linear waves are purely progressive. (d )  Normalized phase 
speed and (e) phase difference predicted by reflected-wave model, equations (6.5), (6.6). 



64 S. Edgar and R. T. Cuza 

where fp = 0.08 Hz. This form for the reflection coefficient was selected arbitrarily, 
and no attempt was made to alter it to fit the data better. The point is that the 
observed and model ((6.5) and (6.6)) phase speeds exhibit qualitatively similar 
behaviour. The ‘anomalous’ phase speeds observed at low frequencies near a coast 
by Busching (1972) are probably due to standing waves. Laboratory experiments 
might also show this effect. Certainly, observations of low-frequency phase speeds 
less than linear values (Ramamonjiarisoa & Coantic 1976) do not necessarily 
‘ contradict the established characteristics of water wave motion ’ as asserted by 
Huang & Tung (1977). 

In the open ocean, there is no phase coupling between different directions and (3.3) 
is valid. In this case coherence is decreased and phase speed increased by energy 
propagating opposite to the main wave direction. Equation (3.3) predicts a decrease 
in coherence as large as 20% and a 20% increase in phase speed caused by an 
oppositely propagating wave having 10% of the energy of the main wave. Many 
deep-water investigations have assumed directional spectra with little or no energy 
at angles greater than 90” from the direction of the directional spectrum’s peak. On 
the other hand, Munk et al. (1963) and Snodgrass et al. (1966) present evidence 
indicating the existence of a background-radiation field in the ocean. Although this 
isotropic radiation may be low in energy, it can conceivably have an effect comparable 
to nonlinearities. 

7. Skewness 
For a zero-mean process the skewness is defined as 

~ 1 7 3 1  skewness = - 
E I q2 1:’ 

where E is the expected value, or average, operator. A sea surface composed of a linear 
combination of sinusoids with random phases has (statistically) zero skewness. On 
the other hand, it is well &own that measured values of skewness in the shoaling 
region are, on average, greater than zero, consistent with the observation that the 
waves have sharp peaks and broad, flat troughs. Sea-surface skewness has been 
observed to evolve from a value close to zero in deep water to a maximum somewhat 
seaward of the region of breaking, and finally decreasing in shallower water (Guza 
& Thornton 1 9 8 5 ~ ) .  Similar skewness evolution was observed in the data investigated 
in the present study (figure 10). Skewness was calculated by averaging the skewness 
(7 .1)  from successive 512 s records of band-passed (0.04 < f  < 0.3 Hz) sea-surface 
elevation and cross-shore velocity. The velocity skewnesses are included to illustrate 
qualitatively that their evolution is similar (with the exception of 12 February data) 
to sea-surface skewness. In a non-dispersive, shallow-water theory, these skewnesses 
are, in fact, equal. The higher-energy wave fields tend to have higher maximum values 
of skewness (figures lOc, d )  than the low-energy waves (figures 10a, b,  e ) .  (The spectra 
for 3 February, not shown, are similar in shape and level to the 4 February data, 
figure 4). At 4 m depth (z = 0 m, initial condition) the low-energy data (figures 10a, b )  
are in the increasing stage of skewness evolution, while the higher-energy data 
(figures 1 0 c , d )  are near or beyond the peak skewness value. The double-peaked 
spectra of 12 February (figure 5) have different observed skewness evolution, with 
observed sea-surface skewness values close to and below zero (figure 10e). 

The nonlinear model predicts observed trends in skewness evolution for four of the 
five data sets. The anomalous behaviour of 12 February data is not predicted by the 
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FIQURE 10. Skewness versus depth : 0, observed sea-surface-elevation skewness; *, observed 
cross-shore-velocity skewness ; + , sea-surface-elevation skewness predicted by the nonlinear model, 
equation (4.2). The solid connecting line is a visual aid. (a) 30 January, H ,  = 33 cm; (b )  2 February, 
60 cm; ( e )  3 February, 93 cm; (a?) 4 February, 88 cm; (e) 12 February, 52 cm. 

nonlinear model. Some of the data sets show substantial dissipation by the most 
shoreward sensor (table 1) owing to wave breaking. Although i t  is not theoretically 
known how the skewness of a broadband wave field is affected by dissipation, it 
appears that for those data considered here wave breaking is associated with a large 
decrease in skewness. The comparison between data and nonlinear predictions 
indicates that the nonlinearities modelled by (4.1) are governing skewness evolution 
in the shoaling region, at  least for z < 41 m. The upturn in nonlinear-model skewness 
predictions at  x = 56 m for 3 and 4 February (figures lOc, d )  may be due to the over- 
prediction of energy levels at high frequencies (f > 0.2 Hz) by the nonlinear model, as 
discussed above (figures 3,4) .  A detailed investigation of skewness evolution through 
the shoaling region and the surf zone using bispectral techniques is in progress. 

8. Wave groups 
Wave-group statistics observed in approximately 10 m depth during the Santa 

Barbara experiment were shown by Elgar et al. (1984) to be not inconsistent with 
linear dynamics. On the other hand, group statistics observed in shallower water 
(< 4 m) showed marked departure from linear theory. One such wave-group statistic 
is the mean length of runs of consecutive waves which exceed the significant wave 
height. 
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FIQURE 11. Mean length of runs greater than the significant wave height versus depth. 0,  data; 
A, directional LFDT; +, nonlinear model. The solid and dashed lines are a visual aid. (a) 30 
January; ( b )  2 February; (c) 3 February; ( d )  4 February; (e) 12 February. 

I n  the light of Elgar et al. (1984), i t  is interesting to compare observations of 
mean run lengths with linear and nonlinear predictions, as in figure 11.  Linear pre- 
dictions of run lengths a t  each sensor location were obtained from time series 
associated with spectra calculated from (3.1). The spectra were band-pass filtered 
(0.04 < f < 0.3 Hz), coupled with random phases, and subjected to inverse fast 
Fourier transformation to yield a time series with the desired linearity. This process 
was repeated 100 times at each sensor location for each data set. The LFDT run 
lengths shown in figure 11 are averages of mean run lengths from the 100 realizations. 
Details of the simulation procedure and of the statistical behaviour of run lengths 
can be found in Elgar et al. (1984). As shown in figure 11 ,  the mean run lengths 
predicted by LFDT are substantially different from those observed in the field data 
a t  the deepest sensor for several of the data sets, indicating that some of the 4 m data 
are inconsistent with random phases. However, the linearly predicted run length in 
4 m  for the low-energy 30 January data is almost identical with the field value 
(figure l l a ) .  As the 30 January data show, the run lengths remain almost constant, 
and are predicted almost equally well by both LFDT and the nonlinear model. The 
12 February data (figure l l e )  also have a fairly constant mean group length 
throughout the shoaling region, which is predicted only slightly more accurately by 
the nonlinear model than by LFDT. In contrast to the nearly constant mean run 
lengths of 30 January and 12 February, the 2,3,  and 4 February data (figures 11 M )  
show substantial run-length evolution, with an increase in run length between 4 and 
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FIGURE 12. Direction, relative to the beach normal, of the peak of the directional spectra for each 
frequency band. 0, angle measured in 9 m depth; A, angle predicted by Snell's law in 3 4  m depth; 
x , angle measured in 3-4 m depth. (a) 2 February; (b )  12 February. 

predictions do not model this behaviour a t  all, displaying a relatively constant value 
of run length throughout the entire region. The nonlinear model, however, does 
predict the structure of run-length evolution for these three data sets, with the 
predicted mean length of runs rising above the initial values and then dropping to 
a low value in shallower water. 

9. Discussion 
Directional spectra in 9 m depth were obtained from a slope array of 4 bottom 

mounted pressure sensors, which contains information formally equivalent to the 
colocated pressure-sensor-current-meter pairs used in shallower water. Like the 3 4  m 
directional spectra, the 9 m-depth directional spectra were calculated with a 
maximum-likelihood technique (Oltman-Shay & Guza 1985). Figure 12 shows the 
measured 9m-depth central angle (angle of maximum power) as a function of 
frequency, along with the central angle predicted by Snell's law in shallow water 
(approximately 3.5 m, depending on tidal stage), and the angle actually measured 
at  the shallow depth. Plane-parallel contours were assumed. Linear refraction using 
the actual topography makes only a few degrees difference to the predicted 
shallow-water angles of 0.1 and 0.2 Hz plane waves. Snell's law accurately predicts 
the shallow-water central angle for f < 0.1 Hz, but not for higher frequencies, with 
discrepancies as large as 30". The measured high-frequency central angles in shallow 
water tend toward alignment with the spectral peak's direction, which is nearly 
normally incident. 

These results are consistent with the (nonlinear) generation of a high-frequency 
directional mode aligned with the low-frequency peak, as observed by FG with linear 
arrays in 10 and 4 m depths, if the limited resolution of the directional estimates in 
the present study is taken into account. The pressure-sensor-current-meter system 
cannot resolve peaks separated by less than 60°, and gives a central angle skewed 
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toward the more energetic mode (Oltman-Shay & Guza 1985). Thus, the 2 February 
directional spectra (figure 12a), which show the entire high-frequency band to  be 
almost colinear with the low-frequency swell peak, suggest that  most of the 
high-frequency energy at 4 m is nonlinearly generated shoreward of the 9 m station. 
In  contrast, the high-frequency central angles in 4 m  depth on 12 February 
(figure 126) are displaced by only about one-third of the angular spread between the 
predicted Snell’s law angles and the low-frequency peak. This is consistent with a 
smaller fraction of the 12 February high-frequency energy in 4 m  depth being 
nonlinearly generated, as would be expected given the approximately equal amounts 
of energy in high- and low-frequency bands (figure 5). It is noteworthy that the 
observed low-frequency angles in 4 m depth are not noticeably skewed toward the 
high-frequency angles. This asymmetry in central-angle displacement suggests that  
transfers of energy to lower frequencies may be relatively weaker than to higher 
frequencies. It may also only reflect differences in the directional distribution of high 
(broad) and low (narrow) frequencies in 10 m depth. An important implication of 
these observations is that, except near the low-frequency peak of the spectrum, 
measured shallow-water directional spectra cannot necessarily be used to estimate 
deep- or shallower-water directional spectra by way of Snell’s law. 

10. Conclusions 
Comparisons between observations of shoaling ocean waves in depths from 4 to  

1 m and linear finite-depth theory ((3.1)-(3.3)) indicate that the evolution of many 
wave-field statistics are not well predicted by linear theory. For example, LFDT does 
not predict aspects of the power-spectral evolution observed in the field, such as the 
growth of harmonics of the spectral peak. Improved spectral predictions (figures 2-5) 
are obtained with the nonlinear Boussinesq model (4.2). For low-energy-wave 
conditions, the coherence between sensor pairs and component phase velocities of the 
field data are relatively well predicted by directional LFDT (figure 6). Frequency 
dispersion is clearly seen a t  the deepest sensor locations (figure 6a) .  I n  very shallow 
water directional LFDT and the normally incident nonlinear model both predict 
coherences remarkably similar to the data (figure 6c). The meaning, if any, of this 
apparent coincidence is unknown. For higher-energy-wave conditions, the nonlinear 
model predicts the coherence and phase speed between sensors more accurately than 
LFDT does, particularly in very shallow water (figures 7 and 8). The effect of 
phase-locked reflected waves on coherence and phase speed is shown to be not 
insignificant even for low values of the reflection coefficient (figure 9). Reflected energy 
is important for frequencies below the spectral peak in the present experiments, and 
may explain apparent low-frequency phase-speed anomalies observed near coasts and 
in laboratory basins. Various other wave statistics are also more accurately predicted 
by the nonlinear model than by LFDT. For example, observed evolution of 
sea-surface-elevation skewness is qualitatively predicted by the nonlinear model 
(figure lo), while LFDT has zero skewness. Mean lengths of runs of high waves also 
show evolution which is better accounted for by the nonlinear model than by LFDT 
(figure 11) .  

Changes in the directional spectra between 9 and 3 4  m depths are consistent with 
the nonlinear generation of high-frequency waves which are directionally aligned with 
the more energetic low-frequency waves. Thus, the directional distribution of high- 
frequency waves in very shallow water can be influenced strongly by nonlinearities. 
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A two-dimensional nonlinear model based on equations such as those given by 
Peregrine (1967) is needed to model quantitatively this phenomenon. The numerical 
implementation of such a model for realistic directional spectra is non-trivial. 
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